
Ergodic Theory - Week 8

Course Instructor: Florian K. Richter
Teaching assistant: Konstantinos Tsinas

1 Classifying measure preserving systems

P1. (a) Let (X,B, µ, T ) be a measure-preserving system. Show that T k is weak mixing if and only
if T is weak mixing.

Solution: (=⇒) If T is weak mixing then for A,B ∈ B we have

1

N

N−1∑
n=0

|µ(T−knA ∩B)− µ(A)µ(B)| ≤ 1

N

k(N−1)∑
n=0

|µ(T−nA ∩B)− µ(A)µ(B)|

=
k(N − 1)

N
· 1

k(N − 1)

k(N−1)∑
n=0

|µ(T−nA ∩B)− µ(A)µ(B)| → 0,

as N → +∞ and, thus, T k is weak mixing.

(⇐=) If T k is weak mixing then for A,B ∈ B and i ∈ {0, ..., k − 1} we have that

ĺım
N→∞

1

N

N−1∑
n=0

|µ(T−knT−iA ∩B)− µ(T−iA)µ(B)|,

which can be rewritten as

ĺım
N→∞

1

N

N−1∑
n=0

|µ(T−(kn+i)A ∩B)− µ(A)µ(B)|.

In particular

ĺım
N→∞

1

N

N−1∑
n=0

|µ(T−nA ∩B)− µ(A)µ(B)|

= ĺım
N→∞

k−1∑
i=0

1

N

∑
n≤(N−2)/k

|µ(T−(nk+i)A ∩B)− µ(A)µ(B)|

=
k−1∑
i=0

ĺım
N→∞

(N − 2)

kN
· 1

(N − 2)/k

∑
n≤(N−2)/k

|µ(T−(nk+i)A ∩B)− µ(A)µ(B)|

=

k−1∑
i=0

0 = 0.

Thus, T is weak-mixing.
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(b) Let (X,B, µ, T ) and (Y,A, ν, S) be measure-preserving systems. Show that the system
(X × Y,B⊗A, µ⊗ ν, T × S) is weak mixing if and only if both (X,B, µ, T ) and (Y,A, ν, S)
are weak mixing.

(⇐=) Since sets of the form A × B generate the product σ-algebra, it suffices to show
weak mixing for sets of this form. Therefore, is enough to prove that for A,C ∈ B and
B,D ∈ A there is a subset E ⊆ N of zero density, such that

ĺım
n→∞
n∈Ec

µ× ν
(
(T × S)−n(A×B) ∩ (C ×D)

)
= µ× ν((A×B)) · µ× ν(C ×D)).

Since X and Y are weakly mixing, there are sets E1 and E2 of zero density such that

ĺım
n→∞
n∈Ec

1

µ(T−nA ∩ C) = µ(A)µ(C), and ĺım
n→∞
n∈Ec

2

ν(T−nB ∩D) = ν(B)ν(D).

Consider E = E1 ∪ E2. Notice that E has zero density. It follows that

ĺım
n→∞
n∈Ec

µ× ν((T × S)−n(A×B) ∩ (C ×D)) = ĺım
n→∞
n∈Ec

µ(T−nA ∩ C)ν(T−nB ∩D)

= ĺım
n→∞
n∈Ec

µ(T−nA ∩ C) ĺım
n→∞
n∈Ec

ν(T−nB ∩D)

= µ(A)µ(C)ν(B)ν(D)

= µ× ν((A×B)) · µ× ν(C ×D))

(=⇒) For this direction, it is enough to see that any factor of a weak mixing system is weak
mixing. For this, suppose that (X,B, µ, T ) is weak mixing and that π : (X,B, µ, T ) →
(Y,A, ν, S) is a factor. Let A,B ∈ A, and consider π−1(A), π−1(B) ∈ B. Using that X is
weak mixing we have that there is a set E of density zero, such that

ĺım
n→∞
n∈Ec

µ(T−nπ−1(A) ∩ π−1(B)) = µ(π−1(A))µ(π−1(B)).

Using that πµ = ν and πT = S we get

ĺım
n→∞
n∈Ec

ν(S−nA ∩B) = ν(A)ν(B),

and thus the factor is weak mixing as well.

P2. Let (X,B, µ, T ) be an invertible measure preserving system. Prove that if the system is weak
mixing then for any set A ∈ B we have

ĺım
N→∞

ĺım
M→∞

1

NM

N∑
n=1

M∑
m=1

µ(A ∩ T−nA ∩ T−mA ∩ T−n−mA) = µ(A)4.

We assume that the system is weak mixing.

We fix N and study the expression

ĺım
M→∞

1

NM

N∑
n=1

M∑
m=1

µ(A ∩ T−nA ∩ T−mA ∩ T−n−mA)
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Since the system is weak mixing, we have that, for all 1 ≤ n ≤ N ,

ĺım
M→∞

1

M

M∑
m=1

µ(A∩T−nA∩T−mA∩T−n−mA) = µ(A∩T−nA)µ(A∩T−nA) =
(
µ(A ∩ T−nA)

)2
Therefore, it suffices to show that

ĺım
N→∞

1

N

∑
1≤n≤N

(
µ(A ∩ T−nA)

)2
= (µ(A))4 (1)

Since the system is weak-mixing, we know that

ĺım
N→∞

1

N

∑
1≤n≤N

∣∣∣µ(A ∩ T−nA)− (µ(A))2
∣∣∣ = 0.

Observe that ∣∣∣(µ(A ∩ T−nA)
)2 − (µ(A))4

∣∣∣ ≤ 2
∣∣∣µ(A ∩ T−nA)− (µ(A))2

∣∣∣ .
Hence,

ĺım
N→∞

1

N

∑
1≤n≤N

∣∣∣(µ(A ∩ T−nA)
)2 − (µ(A))4

∣∣∣ = 0

Since ∣∣∣∣∣∣ 1N
∑

1≤n≤N

(
µ(A ∩ T−nA)

)2 − (µ(A))4

∣∣∣∣∣∣ ≤ 1

N

∑
1≤n≤N

∣∣∣(µ(A ∩ T−nA)
)2 − (µ(A))4

∣∣∣
by the triangle inequality, (1) follows.

P3. Let (X,A, µ, T ) and (Y,B, ν, S) be two measure-preserving maps.

(a) Show that T × S has discrete spectrum if and only if both T and S have discrete spec-
trum.

If T × S has discrete spectrum, there is an orthonormal basis {hn}n∈N of eigenfunctions
on X × Y . Called πX and πY the natural projections onto X and Y respectively. We
consider the functions y → {

∫
X hn(x, y)dµ(x)}n and x → {

∫
Y hn(x, y)dν(y)}n on the

spaces Y and X respectively. We will construct an orthonormal basis of eigenfunctions
on X and Y using those functions. We do this for X, since the same proof works for Y .
Denote fn(x) =

∫
Y hn(x, y)dν(y).

• fn is an eigenfunction: Let αn the eigenvalue of hn. Then,

fn(Tx) =

∫
Y
hn(Tx, y)dν(y) =

∫
Y
hn(Tx, Sy)dν(y) = αn

∫
Y
hn(x, y)dν(y)

where we used the fact that S preserves ν in the middle equality.

• linear combinations of fn are dense in L2(X): Let f ∈ L2(X) and consider the
function f × 1 ∈ L2(X × Y ). We know that for ϵ > 0 there is a linear combination∑K

k=0 ckhk such that ||
∑K

k=0 ckhk − f × 1||L2(X×Y ) ≤ ϵ . In particular, using the
Cauchy-Schwarz inequality we get
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∥
K∑
k=0

ckfk − f∥2L2(X) =

∫
X

∣∣∣∣∣
∫
Y

(
K∑
k=0

ckhk(x, y)− f(x)

)
dν(y)

∣∣∣∣∣
2

dµ(x)

≤
∫
X

∫
Y

∣∣∣∣∣
K∑
k=0

ckhk(x, y)− f(x)

∣∣∣∣∣
2

dν(y)dµ(x)

=
∥∥ K∑

k=0

ckhk(x, y)− f × 1
∥∥2
L2(X×Y )

≤ ϵ.

• Constructing an orthonormal subset: This collection of eigenfunctions is not neces-
sarily orthogonal. However, as they are eigenfunctions, they are orthogonal if they
correspond to different eigenvalues. So, we need to modify functions corresponding
to the same eigenspace.
For an eigenvalue α ∈ S1, let {fnk

}k∈N the set of eigenfunctions associated to α

(possibly a finite set). Define f̃n1 = fn1 . Assume we have defined f̃nj for all j < k.

Call Pk =
∑

j<k f̃nj ⟨fnk
, f̃nj ⟩ and define

f̃nk
=

{
(fnk

− Pk)/||fnk
− Pk|| if fnk

̸= Pk

0 otherwise.

With this, after eliminating the zero functions, we have that {f̃n}n is an orthonormal
basis of eigenfunctions, and thus T has discrete spectrum.

Now suppose that T and S have discrete spectrum, with {fn}n and {gn}n orthonormal
basis of eigenfunctions respectively. Consider H = {hn,m := fn × gm}n,m∈N. We claim
that H is an orthonormal basis of eigenvalues of X × Y . Indeed:

• Eigenfunction: Let αn and βm the eigenvalues of fn and gn. Then

(T × S)hn = Tfn · Sgn = αnβmf · g = αnβmh.

• Orthonormal: Let (n1,m1), (n2,m2) ∈ N2

⟨hn1,m1 , hn2,m2⟩ =
∫
X
fn1fn2dµ ·

∫
Y
gm1gm2dν =

{
1 if (n1,m1) = (n2,m2)

0 otherwise
.

• Basis: As {fn}n is dense in L2(X) and {gm}m is dense in L2(Y ) we have that the
closure of H contains the set {f × g ∈ L2(X × Y ) | f ∈ L2(X), g ∈ L2(Y )}, which we
know is dense in L2(X × Y ). Therefore H = L2(X × Y ) and the proof is complete.

(b) Give an example of a system that is neither weak mixing nor has discrete spectrum.

Consider a non trivial weak mixing system (X,A, µ, T ) and a non trivial system (Y,B, ν, S)
with discrete spectrum. Then, the product system (X × Y,A⊗B, µ⊗ ν, T ×S) is neither
weak mixing nor has discrete spectrum. Indeed, if we assume otherwise, namely that
the product system is weak mixing or that has discrete spectrum, then we will have that
(Y,B, ν, S) is weak mixing or that (X,A, µ, T ) has discrete spectrum respectively (by the
previous part of this problem). Without loss of generality, assume that (X,A, µ, T ) has
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discrete spectrum. Thus we found a system both weak mixing and with discrete spec-
trum. We conclude that all eigenfunctions are constant, and therefore L2(X) consists only
of constant functions. This means that (X,A, µ, T ) is conjugated to the trivial system,
which is a contradiction.

P4. Here, we study some ergodic theorems along subsequences under strong assumptions on the
system (like weak-mixing).

(a) (Optional) Prove van der Corput’s lemma: let H be a Hilbert space and let (un)n∈N be a
sequence of vectors with ∥un∥ ≤ 1. Show that if

ĺım
H→+∞

1

H

∑
0≤h≤H

lim sup
N→+∞

∣∣∣∣∣∣ 1N
∑

1≤n≤N

⟨un+h, un⟩

∣∣∣∣∣∣ = 0,

then

ĺım
N→+∞

∥∥∥ 1

N

∑
1≤n≤N

un

∥∥∥ = 0

We prove the quantitatively precise and more useful estimate

∥∥∥ 1

N

∑
1≤n≤N

un

∥∥∥2 ≤ C1

H

∑
1≤h≤H

∣∣∣∣∣∣ 1N
∑

1≤n≤N

⟨un+h, un⟩

∣∣∣∣∣∣+ C2

H
+

C3H

N

valid for any 1 ≤ H ≤ N and some absolute constants C1, C2, C3 that will be calculated
throughout the proof (the constants are unimportant in general). The statement follows
easily by taking N → +∞ and then H → +∞.

For each h ∈ [1, H] ∩ Z, we have∥∥∥ 1

N

∑
1≤n≤N

un − 1

N

∑
1≤n≤N

un+h

∥∥∥ ≤ h

N
≤ H

N

and averaging over all 1 ≤ h ≤ H, we get that∥∥∥ 1

N

∑
1≤n≤N

un − 1

H

∑
1≤h≤H

1

N

∑
1≤n≤N

un+h

∥∥∥ ≤ H

N
(2)

Applying the triangle inequality and then Cauchy-Schwarz, we conclude∥∥∥ 1

H

∑
1≤h≤H

1

N

∑
1≤n≤N

un+h

∥∥∥2 = ∥∥∥ 1

N

∑
1≤n≤N

1

H

∑
1≤h≤H

un+h

∥∥∥2 ≤
 1

N

∑
1≤n≤N

∥∥∥ 1

H

∑
1≤h≤H

un+h

∥∥∥
2

≤ 1

N

∑
1≤n≤N

∥∥∥ 1

H

∑
1≤h≤H

un+h

∥∥∥2 (3)

We expand out the right-hand side as

1

N

∑
1≤n≤N

1

H2

∑
1≤h1,h2≤H

⟨un+h1 , un+h2⟩
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The diagonal contribution h1 = h2 is equal to

1

N

∑
1≤n≤N

1

H2

∑
1≤h≤H

∥un+h∥2 ≤
1

H
,

since all terms are bounded in magnitude by 1.

For the off-diagonal contribution, we use symmetry to get that∣∣∣∣∣∣ 1N
∑
n≤N

1

H2

∑
1≤h1,h2≤H

⟨un+h1 , un+h2⟩

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 2N

∑
n≤N

1

H2

∑
1≤h1<h2≤H

⟨un+h1 , un+h2⟩

∣∣∣∣∣∣ =∣∣∣∣∣∣ 2

H2

∑
1≤h1<h2≤H

1

N

∑
n≤N

⟨un+h1 , un+h2⟩

∣∣∣∣∣∣ ≤ 2

H2

∑
1≤h1<h2≤H

∣∣∣∣∣∣ 1N
∑
n≤N

⟨un+h1 , un+h2⟩

∣∣∣∣∣∣ .
Observe that∣∣∣∣∣∣ 1N

∑
n≤N

⟨un+h1 , un+h2⟩

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 1N

∑
h1+1≤n≤N+h1

⟨un, un+h2−h1⟩

∣∣∣∣∣∣ ≤∣∣∣∣∣∣ 1N
∑

1≤n≤N+h1

⟨un, un+h2−h1⟩

∣∣∣∣∣∣+ 2h1
N

≤

∣∣∣∣∣∣ 1N
∑

1≤n≤N

⟨un, un+h2−h1⟩

∣∣∣∣∣∣+ 2H

N

where we used the triangle inequality for the first inequality and bounded trivially each
term by 1.

Using this inequality, we get that the off-diagonal contributions is bounded by

2

H2

∑
1≤h1<h2≤H

∣∣∣∣∣∣ 1N
∑

1≤n≤N

⟨un, un+h2−h1⟩

∣∣∣∣∣∣+ 2H

N

 ≤

2

H2

∑
1≤h1<h2≤H

∣∣∣∣∣∣ 1N
∑

1≤n≤N

⟨un, un+h2−h1⟩

∣∣∣∣∣∣+ 2H

N

The difference h2−h1 takes values in 1, . . . H − 1 and a simple counting yields that every
r in this range occurs as the difference of H − r pairs. Therefore, we may rewrite the
right-hand side as

2

H2

∑
1≤r≤H−1

(H−r)

∣∣∣∣∣∣ 1N
∑

1≤n≤N

⟨un, un+r⟩

∣∣∣∣∣∣+2H

N
≤ 2

H

∑
1≤r≤H−1

∣∣∣∣∣∣ 1N
∑

1≤n≤N

⟨un, un+r⟩

∣∣∣∣∣∣+2H

N
≤

2

H

∑
1≤r≤H

∣∣∣∣∣∣ 1N
∑

1≤n≤N

⟨un, un+r⟩

∣∣∣∣∣∣+ 2H

N
+

2

H
.
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Using this, as well as the contribution from the diagonal terms, we deduce from (3) the
bound

∥∥∥ 1

H

∑
1≤h≤H

1

N

∑
1≤n≤N

un+h

∥∥∥2 ≤ 2

H

∑
1≤r≤H

∣∣∣∣∣∣ 1N
∑

1≤n≤N

⟨un, un+r⟩

∣∣∣∣∣∣+ 2H

N
+

3

H
.

Using (2) and the triangle inequality, we deduce that

∥∥∥ 1

N

∑
1≤n≤N

un

∥∥∥2 ≤ 2

H

∑
1≤h≤H

∣∣∣∣∣∣ 1N
∑

1≤n≤N

⟨un, un+h⟩

∣∣∣∣∣∣+ 3

(
H

N
+

1

H

)
.

(b) Use part (a) to show that if a system (X,B, µ, T ) is totally ergodic (that is, T k is ergodic
for all k ∈ N) then for any function f ∈ L∞(µ), we have

ĺım
N→+∞

∥∥∥ 1

N

N∑
n=1

Tn2
f −

∫
f dµ

∥∥∥
L2(µ)

= 0

Setting g = f −
∫
f dµ, we have

∫
g dµ = 0 and our problem can be rewritten as

ĺım
N→+∞

∥∥∥ 1

N

N∑
n=1

Tn2
g
∥∥∥
L2(X)

= 0.

We will prove this by using part (a). Our Hilbert space is L2(X) and our sequence is
un = Tn2

g. Without loss of generality, we can rescale g and assume that ∥g∥L∞(X) ≤ 1

and thus ∥Tn2
g∥ ≤ 1.

Let H be a fixed positive integer and consider the expression

1

H

∑
1≤h≤H

lim sup
N→+∞

∣∣∣∣∣∣ 1N
∑

1≤n≤N

⟨T (n+h)2g, Tn2
g⟩

∣∣∣∣∣∣ = 1

H

∑
0≤h≤H

lim sup
N→+∞

∣∣∣∣∣∣ 1N
∑

1≤n≤N

∫
T (n+h)2g · Tn2g dµ

∣∣∣∣∣∣
Because T preserves the measure µ, we can compose with T−n2

in the integral to get∫
T (n+h)2g · Tn2g =

∫
g · T 2nh+h2

g dµ

.

Therefore, we can rewrite the double average as

1

H

∑
1≤h≤H

lim sup
N→+∞

∣∣∣∣∣∣ 1N
∑

1≤n≤N

∫
g · T 2hn(T h2

g) dµ

∣∣∣∣∣∣ .
Since the system is totally ergodic, the transformation T 2h is ergodic for all h ̸= 0 and we
have that the averages

1

N

∑
1≤n≤N

T 2hn(T h2
g)
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converge to the integral
∫
T h2

g dµ =
∫
g dµ = 0 in L2(X). The Cauchy-Schwarz inequality

implies that∣∣∣∣∣∣
∫

g

 1

N

∑
1≤n≤N

T 2hn(T h2
g) dµ

∣∣∣∣∣∣ ≤ ∥g∥L2(X)

∥∥∥ 1

N

∑
1≤n≤N

T 2hn(T h2
g)
∥∥∥
L2(X)

→ 0.

Therefore, each term in the average over h is zero and so the whole average is zero.
Taking H → +∞, we conclude that the assumptions in part (a) are satisfied and our
claim follows.

(c) Use part (a) to show that if (X,B, µ, T ) is weak-mixing, then for any f ∈ L∞(µ), we have

ĺım
N→+∞

∥∥∥ 1

N

N∑
n=1

Tnf · T 2nf −
(∫

f dµ

)2 ∥∥∥
L2(X)

= 0

Conclude that if (X,B, µ, T ) is weak-mixing, then for any set A ∈ B, we have

1

N

N∑
n=1

µ(A ∩ T−nA ∩ T−2nA) = (µ(A))3 .

We prove the more general statement that

ĺım
N→+∞

∥∥∥ 1

N

N∑
n=1

Tnf · T 2ng −
∫

f dµ

∫
g dµ

∥∥∥
L2(X)

= 0

As in the previous exercise, we may write f1 = f −
∫
f dµ and g1 = g −

∫
gdµ. Observe that

1

N

N∑
n=1

Tn

(
f1 +

∫
f dµ

)
· T 2n

(
g1 +

∫
g dµ

)
−
∫

f dµ

∫
g dµ =

1

N

N∑
n=1

Tnf1 · T 2ng1 −
∫

g dµ

(
1

N

N∑
n=1

Tnf1

)
−
∫

f dµ

(
1

N

N∑
n=1

T 2ng1

)
.

Our result will follow if we show that each one of the three terms converges to zero in L2(X).

The second term converges to zero in L2(X) by the mean ergodic theorem, since T is ergodic
(as it is weak-mixing) and

∫
f1 dµ = 0. Similarly, the third term converges in L2(X) to zero,

since T 2 is ergodic (T 2 is weak-mixing by the first exercise, therefore it is ergodic).

It remains to show that

ĺım
N→+∞

∥∥∥ 1

N

N∑
n=1

Tnf1 · T 2ng1

∥∥∥
L2(X)

= 0.

We will prove this using part (a). Our Hilbert space is L2(X) and our sequence un =
Tnf1T

2ng1. We may rescale f1, g1 and assume that they are 1-bounded, in which case ∥un∥L2(X) ≤
1.
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Let H be a positive integer and consider the expression

1

H

∑
0≤h≤H

lim sup
N→+∞

∣∣∣∣∣∣ 1N
∑

1≤n≤N

⟨Tn+hf1 · T 2(n+h)g1, T
nf1 · T 2ng1⟩

∣∣∣∣∣∣ =
1

H

∑
0≤h≤H

lim sup
N→+∞

∣∣∣∣∣∣ 1N
∑

1≤n≤N

∫
Tn+hf1 · T 2(n+h)g1 · Tnf1 · T 2ng1 dµ

∣∣∣∣∣∣
We compose with T−n in the integral above to get that∫

Tn+hf1 · T 2(n+h)g1 · Tnf1 · T 2ng1 dµ =

∫
(f1 · T hf1) · Tn(g1 · T 2hg1)dµ.

Since T is ergodic, we have that

ĺım
N→+∞

∥∥∥ 1

N

∑
1≤n≤N

Tn(g1 · T 2hg1)−
∫

g1 · T 2hg1 dµ
∥∥∥
L2(X)

= 0

by the mean ergodic theorem. Using a similar argument as in the previous part, we deduce
that

ĺım
N→+∞

1

N

∑
1≤n≤N

∫
(f1 · T hf1) · Tn(g1 · T 2hg1)dµ =

∫
(f1 · T hf1)

(∫
g1 · T 2hg1 dµ

)
dµ =∫

f1 · T hf1 dµ

∫
g1 · T 2hg1 dµ.

Therefore, our average over h is equal to

1

H

∑
0≤h≤H

∣∣∣∣∫ f1 · T hf1 dµ

∫
g1 · T 2hg1 dµ

∣∣∣∣
and we want to show that this limit is zero. Since we assume that ∥g1∥L∞(X)≤, we have that∣∣∣∣∫ g1 · T 2hg1 dµ

∣∣∣∣ ≤ ∫ ∣∣∣g1 · T 2hg1

∣∣∣ dµ ≤ 1

and, thus, it suffices to show that

ĺım
N→+∞

1

H

∑
0≤h≤H

∣∣∣∣∫ f1 · T hf1 dµ

∣∣∣∣ = 0

Since the system is weak-mixing and f1 ∈ L∞(X) (so it is also square-integrable), we know
that

ĺım
N→+∞

1

H

∑
0≤h≤H

∣∣∣∣∫ f1 · T hf1 −
∫

f1 dµ ·
∫

f1 dµ

∣∣∣∣ = 0

and since
∫
f1 = 0, the conclusion follows.
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To get the last convergence, we apply our result for f = g = 1A to deduce that

ĺım
N→+∞

∥∥∥ 1

N

N∑
n=1

Tn1AT
2n1A −

(∫
1A dµ

)2 ∥∥∥ = 0

and this coupled with the Cauchy-Scwharz inequality imply that

ĺım
N→+∞

∣∣∣∣∣
∫
1A

(
1

N

N∑
n=1

Tn1AT
2n1A

)
dµ−

(∫
1A dµ

)3
∣∣∣∣∣ = 0,

Since
∫
1A · Tn1A · T 2n1A dµ =

∫
1A∩T−nA∩T−2nA dµ = µ(A ∩ T−nA ∩ T−2nA), the result

follows.
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